_    ___ ___      _                               
/ \ |_ _/ _ \ ___| |_ _ __ ___ __ _ _ __ ___ ___
/ _ \ | | | | / __| __| '__/ _ \/ _` | '_ ` _ \/ __|
/ ___ \ | | |_| \__ \ |_| | | __/ (_| | | | | | \__ \
/_/ \_\___\___/|___/\__|_| \___|\__,_|_| |_| |_|___/
Twitch
Invidious (YT)

Invidious > Channel > Victor Lavrenko

Trending
Victor Lavrenko 60600 subscribers    RSS
View channel on YouTube
Videos
Playlists

YT 3 minutes 49 seconds
Victor Lavrenko
PCA 1: Real dimensionality vs observed dimensionality
YT 3 minutes 55 seconds
Victor Lavrenko
PCA 2: Data manifolds in high-dimensional spaces
YT 2 minutes 48 seconds
Victor Lavrenko
PCA 3: The curse of dimensionality
YT 3 minutes 59 seconds
Victor Lavrenko
PCA 4: Tackling the curse of dimensionality
YT 2 minutes 22 seconds
Victor Lavrenko
PCA 5: Feature selection and feature extraction
YT 2 minutes 39 seconds
Victor Lavrenko
PCA 6: Principal component analysis
YT 3 minutes
Victor Lavrenko
PCA 7: Why we maximize variance in PCA
YT 8 minutes 26 seconds
Victor Lavrenko
PCA 8: Principal components = eigenvectors
YT 5 minutes 21 seconds
Victor Lavrenko
PCA 9: Finding eigenvalues and eigenvectors
YT 2 minutes 14 seconds
Victor Lavrenko
PCA 10: Low-dimensional projections of data
YT 11 minutes 55 seconds
Victor Lavrenko
PCA 11: Eigenvector = direction of maximum variance
YT 6 minutes 3 seconds
Victor Lavrenko
PCA 12: Eigenvalue = variance along eigenvector
YT 3 minutes 57 seconds
Victor Lavrenko
PCA 13: How many principal components to use?
YT 3 minutes 49 seconds
Victor Lavrenko
PCA 14: Principal component analysis for the impatient
YT 5 minutes 1 second
Victor Lavrenko
PCA 15: Eigen-faces
YT 3 minutes 57 seconds
Victor Lavrenko
PCA 16: Eigenface representation
YT 2 minutes 18 seconds
Victor Lavrenko
PCA 17: Properties of eigenfaces
YT 1 minute 52 seconds
Victor Lavrenko
PCA 18: When principal components fail
YT 1 minute 48 seconds
Victor Lavrenko
PCA 19: Classification with PCA features
YT 2 minutes 59 seconds
Victor Lavrenko
PCA 20: Linear discriminant analysis
YT 1 minute 59 seconds
Victor Lavrenko
PCA 21: Pros and cons of dimensionality reduction