_    ___ ___      _                               
/ \ |_ _/ _ \ ___| |_ _ __ ___ __ _ _ __ ___ ___
/ _ \ | | | | / __| __| '__/ _ \/ _` | '_ ` _ \/ __|
/ ___ \ | | |_| \__ \ |_| | | __/ (_| | | | | | \__ \
/_/ \_\___\___/|___/\__|_| \___|\__,_|_| |_| |_|___/
Twitch
Invidious (YT)

Invidious > Channel > BOFFIN ASTRO TAM / ENGLISH

Trending
BOFFIN ASTRO TAM / ENGLISH 1220 subscribers    RSS
View channel on YouTube
Videos
Playlists

YT 51 minutes 52 seconds
MIT OpenCourseWare
Advanced 3. Image Classification via Deep Learning
YT 1 hour 11 minutes 48 seconds
MIT OpenCourseWare
Advanced 6. Planning with Temporal Logic
YT 1 hour 22 minutes 51 seconds
MIT OpenCourseWare
Advanced 7: Probabilistic and Infinite Horizon Planning
YT 1 hour 23 minutes 26 seconds
MIT OpenCourseWare
Advanced 4. Monte Carlo Tree Search
YT 1 hour 13 minutes 37 seconds
MIT OpenCourseWare
Advanced 5. Reachability
YT 40 minutes 20 seconds
MIT OpenCourseWare
Advanced 2. Semantic Localization
YT 1 hour 22 minutes 46 seconds
MIT OpenCourseWare
Advanced 1. Incremental Path Planning
YT 8 minutes 46 seconds
MIT OpenCourseWare
Vector Subspaces
YT 12 minutes 31 seconds
MIT OpenCourseWare
Graphs and Networks
YT 13 minutes 2 seconds
MIT OpenCourseWare
Complex Matrices
YT 9 minutes 56 seconds
MIT OpenCourseWare
Properties of Determinants
YT 10 minutes 45 seconds
MIT OpenCourseWare
Computing the Four Fundamental Subspaces
YT 17 minutes 52 seconds
MIT OpenCourseWare
Exam #2 Problem Solving
YT 14 minutes 45 seconds
MIT OpenCourseWare
Subspaces of Three Dimensional Space
YT 12 minutes 40 seconds
MIT OpenCourseWare
Symmetric Matrices and Positive Definiteness
YT 12 minutes 50 seconds
MIT OpenCourseWare
Positive Definite Matrices and Minima
YT 12 minutes 18 seconds
MIT OpenCourseWare
Final Exam Problem Solving
YT 9 minutes 4 seconds
MIT OpenCourseWare
Solving Ax=b
YT 10 minutes 4 seconds
MIT OpenCourseWare
Solving Ax=0
YT 9 minutes 7 seconds
MIT OpenCourseWare
Powers of a Matrix
YT 11 minutes 49 seconds
MIT OpenCourseWare
Markov Matrices
YT 8 minutes 13 seconds
MIT OpenCourseWare
Similar Matrices
YT 9 minutes 51 seconds
MIT OpenCourseWare
Projection into Subspaces
YT 10 minutes
MIT OpenCourseWare
Gram-Schmidt Orthogonalization
YT 14 minutes 40 seconds
MIT OpenCourseWare
Pseudoinverses
YT 10 minutes 20 seconds
MIT OpenCourseWare
Orthogonal Vectors and Subspaces
YT 13 minutes 50 seconds
MIT OpenCourseWare
Determinants and Volume
YT 12 minutes 49 seconds
MIT OpenCourseWare
Determinants
YT 11 minutes 36 seconds
MIT OpenCourseWare
Computing the Singular Value Decomposition
YT 9 minutes 22 seconds
MIT OpenCourseWare
Eigenvalues and Eigenvectors
YT 9 minutes 35 seconds
MIT OpenCourseWare
LU Decomposition
YT 8 minutes 10 seconds
MIT OpenCourseWare
Basis and Dimension
YT 12 minutes 26 seconds
MIT OpenCourseWare
Change of Basis
YT 8 minutes 4 seconds
MIT OpenCourseWare
Least Squares Approximation
YT 10 minutes 18 seconds
MIT OpenCourseWare
Elimination with Matrices
YT 8 minutes 56 seconds
MIT OpenCourseWare
Matrix Spaces
YT 7 minutes 43 seconds
MIT OpenCourseWare
An Overview of Key Ideas
YT 1 second

[Private video]
YT 6 minutes 39 seconds
MIT OpenCourseWare
L25.4 The Probability of a Path
YT 5 minutes 28 seconds
MIT OpenCourseWare
L11.7 The Intuition for the Monotonic Case
YT 4 minutes 12 seconds
MIT OpenCourseWare
L05.9 Elementary Properties of Expectation
YT 6 minutes 28 seconds
MIT OpenCourseWare
L06.5 Total Expectation Theorem
YT 5 minutes 30 seconds
MIT OpenCourseWare
L03.6 Independence Versus Conditional Independence
YT 8 minutes 12 seconds
MIT OpenCourseWare
L21.7 The Time of the K-th Arrival
YT 5 minutes 36 seconds
MIT OpenCourseWare
L10.7 Independent Normals
YT 8 minutes 28 seconds
MIT OpenCourseWare
L18.6 Convergence in Probability
YT 1 minute 47 seconds
MIT OpenCourseWare
L13.1 Lecture Overview
YT 10 minutes 41 seconds
MIT OpenCourseWare
L22.7 Time of the K-th Arrival
YT 2 minutes 29 seconds
MIT OpenCourseWare
L04.1 Lecture Overview
YT 5 minutes 29 seconds
MIT OpenCourseWare
L16.6 Example Continued: LMS Performance Evaluation
YT 6 minutes 17 seconds
MIT OpenCourseWare
L02.6 The Multiplication Rule
YT 11 minutes 25 seconds
MIT OpenCourseWare
L23.5 The Time Until the First (or last) Lightbulb Burns Out
YT 8 minutes 18 seconds
MIT OpenCourseWare
L15.3 Estimating a Normal Random Variable in the Presence of Additive Noise
YT 4 minutes 53 seconds
MIT OpenCourseWare
S01.2 De Morgan's Laws
YT 3 minutes 53 seconds
MIT OpenCourseWare
L13.4 Stick-Breaking Revisited
YT 11 minutes
MIT OpenCourseWare
L20.2 Overview of the Classical Statistical Framework
YT 7 minutes 14 seconds
MIT OpenCourseWare
L11.8 A Nonmonotonic Example
YT 5 minutes 37 seconds
MIT OpenCourseWare
L24.8 Recurrent and Transient States
YT 12 minutes 10 seconds
MIT OpenCourseWare
L24.3 Checkout Counter Example
YT 5 minutes 3 seconds
MIT OpenCourseWare
L01.3 Sample Space Examples
YT 6 minutes 22 seconds
MIT OpenCourseWare
L12.11 Correlations Matter
YT 6 minutes 13 seconds
MIT OpenCourseWare
L20.7 Confidence Intervals for the Mean, When the Variance is Unknown
YT 18 minutes 30 seconds
MIT OpenCourseWare
L26.5 Design of a Phone System
YT 7 minutes 53 seconds
MIT OpenCourseWare
L24.4 Discrete-Time Finite-State Markov Chains
YT 10 minutes 16 seconds
MIT OpenCourseWare
L06.7 Joint PMFs and the Expected Value Rule
YT 5 minutes 20 seconds
MIT OpenCourseWare
L04.7 Partitions
YT 7 minutes 35 seconds
MIT OpenCourseWare
L14.8 Inferring the Unknown Bias of a Coin and the Beta Distribution
YT 10 minutes 24 seconds
MIT OpenCourseWare
S14.1 The Beta Formula
YT 3 minutes 46 seconds
MIT OpenCourseWare
L14.7 Continuous Parameter, Continuous Observation
YT 10 minutes 20 seconds
MIT OpenCourseWare
L20.10 Maximum Likelihood Estimation Examples
YT 2 minutes 45 seconds
MIT OpenCourseWare
L11.4 A Linear Function of a Normal Random Variable
YT 4 minutes 31 seconds
MIT OpenCourseWare
L13.2 Conditional Expectation as a Random Variable
YT 6 minutes 19 seconds
MIT OpenCourseWare
S01.8 Countable and Uncountable Sets
YT 5 minutes 19 seconds
MIT OpenCourseWare
L25.9 Visit Frequency Interpretation of Steady-State Probabilities
YT 5 minutes 7 seconds
MIT OpenCourseWare
L22.2 Definition of the Poisson Process
YT 9 minutes 9 seconds
MIT OpenCourseWare
L23.7 Random Incidence in the Poisson Process
YT 7 minutes 42 seconds
MIT OpenCourseWare
L11.9 The PDF of a Function of Multiple Random Variables
YT 5 minutes
MIT OpenCourseWare
L23.4 Where is an Arrival of the Merged Process Coming From?
YT 2 minutes 34 seconds
MIT OpenCourseWare
L22.9 Summary of Results
YT 1 hour 19 minutes 9 seconds
MIT OpenCourseWare
6. Maximum Likelihood Estimation (cont.) and the Method of Moments
YT 1 hour 15 minutes 29 seconds
MIT OpenCourseWare
15. Regression (cont.)
YT 1 hour 8 minutes 6 seconds
Lex Fridman
Deep Learning Basics: Introduction and Overview
YT 30 minutes 39 seconds
sentdex
Self driving car neural network in the city - Python plays GTA with Tensor Flow p.14
YT 5 minutes 17 seconds
Google for Developers
Google and NXP advance artificial intelligence with the Edge TPU
YT 10 minutes 36 seconds
Google Cloud Tech
The 7 steps of machine learning
YT 27 minutes 24 seconds
Brandon Rohrer
What do neural networks learn?
YT 36 minutes 54 seconds
Insights into Mathematics
Implication and 16 logical operations | Math Foundations 258 | N J Wildberger
YT 7 minutes 28 seconds
Augmented AI
Support Vector Machine (SVM) in 7 minutes - Fun Machine Learning